DSDP3.2 Users Manual

Steven J. Benson
Yinyu Ye

Argonne National Laboratory
Mathematics and Computer Science Division
9700 South Cass Avenue
Argonne, Illinois 60439

Department of Management Sciences
The University of lowa

lowa City, lowa 52242

November 15, 2000

This work was supported by the Mathematical, Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific Computing, U.S. Department of Energy, under
Contract W-31-109-Eng-38.

The DSDP package uses a dual scaling algorithm to solve the positive semidefinite relaxation
of combinatorial optimization problems. It solves problems of the form

Minimize C'o X
(SDP)
Subject to A; ¢ X =b;, ¢1=1,...,m, (1)

X eK.

The variable X must be a symmetric positive semidefinite matrix. Here K = K1 &K@+ - -G K, and
K is the cone of n; x n; symmetric positive semidefinite matrices. The data matrices C, A; € R"*"
are symmetric. The operation C'e X = tr CTX = >k CiXjr and and X (=) = 0 means that
X is positive (semi) definite. Furthermore, we assume the matrices A; are linearly independent,
meaning that 37", y; 4; = 0 implies y3 = ... = y,, = 0. Matrices X that satisfy the constraints
are called feasible, while the others are called infeasible.

The dual variables are y € R™ and the symmetric positive semidefinite matrix S. The dual
problem of (SDP) can be written as follows:

Maximize b7y

(DSP)
Subject to Z%’Ai +5=C, SeK,

=1

where b; and y; is the ¢th elements of the vectors b and y, respectively.

Under relatively mild conditions the primal and dual optimal solution pair (X*) and (y*,S*)
exist, and C' e X* = b1 y*.

1 Dual Scaling Algorithm

Following conventional notation, let

T m
AX:{AloX oo AL e X and ATy:ZAiyi,

=1

Given a dual point (y, S) such that ATy + S —C = R and S > 0, and a parameter ji > 0, each
iteration of the dual scaling algorithm steps toward the solution of the nonlinear system

AX =b Aly+5=C STl = X. (3)
The Newton direction satisfies the linear system

A(AX) =0 AT(Ay) +AS = —R ASTIASSTI —AX =X —pSTh ()

and DSDP solves the Schur complement of these equations, given by

A1SleSA . A SleSTA, 1
: : : Ay=-b— AS™Y) — A(ST'RS™Y). (5)

A5 leStA o A S leS 1A s

The dual step direction Ay is used to compute AS = —AT Ay — R and a matrix X if needed. For
notational convenience, we label the left-hand matrix of (5) M. For an arbitrary feasible X,

The algorithm selects a step size Bg41 such that y*+' = y*+ 8,1 Ay and SF1 = Sk 43, AS >
0. Using the dual step direction and (4), a primal matrix X satisfying the linear constraints can
be calculated using

X=pS"+ps7tAss™, (6)

DSDP does not compute X until the algorithm terminates since the step direction does not depend
on X,

Given a feasible dual starting point and appropriate choices for i and 3, convergence results in
[1] show that either the new dual point (y,S) or the new primal point X is feasible and reduces
the Tanabe-Todd-Ye primal-dual potential function

U(X,S)=pIn(X eS)—Indet X —Indet S
enough to achieve linear convergence.

A more thorough explanation of the the dual scaling algorithm used to solve these problems
can be found in the papers Solving Large-Scale Sparse Semidefinite Programs for Combinatorial
Optimization[2] and DSDP 3: Dual Scaling Algorithm for General Positive Semidefinite Pro-
grams. The C code that implements the algorithms can be downloaded from the Web site at
http: //www.mes.anl.gov/~benson/ or hitp://dollar.biz.uiowa.edu/col/.

2 TUNIX and LINUX Installation Instructions

The compressed tar file DSDP3.2.tar.gz contains an implementation of the dual scaling algorithm
for positive semidefinite programming optimization problems.

1. Create the DSDP3.2 directory structure with

gunzip -d DSDP3.2.tar.gz
tar -xvf DSDP3.2.tar

This command produces the directory DSDP3.2 and several subdirectories.

2. Change directories to DSDP3.2. Several executables have been provided. If one of these runs
on your architecture, proceed to step 3. Otherwise compile the executables using

make install

This command creates libraries in each of the subdirectories and the executables for DSDP.
3. DSDP3.2 can be called from MATLAB version 5.0. Run the sample problems by starting
MATLAB in the DSDP3.2 directory and typing

> check;

Compare the output with the output in demo.solaris. For help using the package, type help
dsdp3.

Run the executables by switching to directory DSDP3.2/exec and typing
dsdp3 trussil.dat-s

Compare the output with that in demo.solaris. If the output from any of the tests differs
significantly from the files, please report it to the developers.

The most common cause of trouble while compiling or running DSDP concerns linking the
program to LAPACK. DSDP links with the LAPACK routine dsyev. On most architectures, this
routine is called from C programs using dsyev_. If this calling sequence is different on your machine,
modify the file DSDP3.2/src/solver/dsdplapack.h . This file contains the line

#define dsdpdsyev dsyev_

which can be modified to call the appropriate routine.

If you have an optimized version of LAPACK available, you may link to it by modifying the
LAPACK macro in the file DSDP3.2/src/Makefile. Users with MATLAB 6.0 or higher can
remove the link to LAPACK, since it is already included in MATLAB 6.0.

You may also have to change the MEX macro in the directory DSDP3.2/src/Makefile. This
macro specifies the location of the MATLAB program and the mex functionality in particular.

3 Using DSDP with MATLAB

Help using the DSDP MATLAB interface can be found by simply typing help dsdp3 in the direc-
tory DSDP3.2. The command

> [STAT, y, X] = DSDP(A,C,Db)

attempts to solve the positive semidefinite program by using a dual scaling algorithm. The ar-
guments A, C, and b, are the same as the corresponding arguments in the SDPT3 [3] package for
semidefinite programming. For a problem with p blocks and m constraints, A is a p X m cell array
and Cis a p x 1 cell array. One block may contain LP variables, and the cells corresponding to this
block should be a vector array. All other cells must contain a square, symmetric, real valued matrix.
The choice of sparse or dense matrix formats belongs to the user and will affect the performance
of the solver. The third argument b is a dense column vector of length m.

The second and third output arguments return the dual and primal solutions, respectively. The
first output argument is a structure with several fields that describe the solution of the problem:

obj an approximately optimal objective value

primal an approximately optimal objective value if convergence to the so-
lution was detected, infeasible if primal infeasibility is suspected,
and unbounded if dual infeasibility is suspected

dual an approximately optimal objective value if convergence to the solu-
tion was detected, infeasible if dual infeasibility is suspected, and
unbounded if primal infeasibility is suspected

iterates number of iterations used by the algorithm

dual_infeasibity the multiple of the identity matrix added to C' — AT(y) in the final
solution to make S positive definite

gaphist a history of the duality gap
infhist a history of the dual infeasibility
termcode 0 solution found, 1: primal infeasible, 2: dual infeasible

There are more ways to call the solver. The command
> [STAT, y, X] = DSDP(A,C,b,0PTIONS,y0)
specifies some options for the solver. The OPTIONS structure may contain any of the following

parameters:

gaptol tolerance for duality gap as a fraction of the value of the objective
functions [default le-3]

inftol tolerance for stopping because of suspicion of dual infeasibility. [de-
fault le-8]

steptol tolerance for stopping because of small steps [default le-2]
maxit maximum number of iterations allowed [default 100]
printyes 1, if want to display result in each iteration, else = 0 [default 1]

scale_data 1, if want to scale the data before solving the problem, else 0 [default

1]

r0 multiple of the identity matrix added to the initial dual matrix. S0 =
C=>> Ajy24r0xI. If r0 < 0, a dynamic selection will be used [default

1]

max_trust_radius maximum trust region radius to be used for feasible dual iterates.
Values between 1 and 10 are typical. Smaller values make the solver
more robust, but larger one often accelerate convergence. A negative
value indicates that the default dynamic strategy should be used
[default -1].

max_infeasible trust radius maximum trust region radius to be used for infea-
sible iterates. Values equal to the dimension of the problem are
typically used. A negative value indicates that the default dynamic
strategy should be used. [default -1].

dual _bound a bound for the dual solution. The solver stops when a feasible dual

iterate with an objective greater than this value is found [default

le+8].

The command
> [STAT, v, X] = DSDP(A,C,b,OPTIONS,yO)

specifies an initial dual vector y0. The default vector consists of positive and negative ones.

If only two output are used,
> [STAT,y] = DSDP()

returns only the solver statistics structure and an approximate dual solution y .

4 Standard Output

The following is an example output from a random problem.

Iter Primal Dual Infeas Mu Step Pnrm
0 0.00000000e+00 -2.47128801e+01 0.0e+00 1.0e+01 0.00 1.00
1 -1.28537231e+01 -1.64471021e+01 0.0e+00 1.2e+00 0.08 26.94
2 -1.28537231e+01 -1.59965110e+01 0.0e+00 2.3e-01 1.00 1.35
3 -1.28537231e+01 -1.59071616e+01 0.0e+00 2.1e-01 1.00 .07
4 -1.28537231e+01 -1.55639753e+01 0.0e+00 1.5e-01 1.00 .22
5 -1.50630757e+01 -1.53435713e+01 0.0e+00 1.4e-01 0.08 12.59

6 -1.51189868e+01 -1.52669146e+01 0.0e+00 1.0e-01 0.28 3.72

~J

-1.51505856e+01 -1.52461229e+01 0.0e+00 1.0e-02 1.00 0.84

8 -1.52220358e+01 -1.52350997e+01 0.0e+00 9.2¢-03 0.12 8.91

The program will print a variety of statistics for each problem to the screen.

Iter
Primal
Dual

Infeas

Mu

Step

Pnrm

the current iterate number
the current estimate of the primal objective function
the current dual objective function

the infeasibility in the current dual solution This number is the multiple of
the identity matrix that has been added to the dual matrix

a central path parameter. This parameter decreases to zero as the points
get closer to the solution

the multiple of the dual step-direction used
The proximity to a point on the central path: ||S®X .S — i]||

5 Standalone version with SDPA files

DSDP can also be run without the MATLAB environment if the user has a problem written in
sparse SDPA format. These executables have been put in the directory DSDP3.2/exec/. The
file name should follow the executable. For example,

> dsdp3 truss4.dat-s

Other options can also be used with DSDP. These should follow the SDPA filename.

-save <filename> to save the solution into a file with a format similar to

SDPA.

-y0 <filename> to specify an initial dual vector.

-maxit <iter> to stop the problem after a specified number of iterations.

-gaptol <rtol> to stop the problem when the relative duality gap is less

than this number.

-trust <radius> limits the step length with a trust region radius. The de-

fault number is 3. A larger radius may accelerate the conver-
gence of the algorithm, but a smaller radius generally makes
it more robust. This radius applies only when the iterates
are feasible.

-inftrust <radius> limits the step length with a trust region radius when
the iterates are not feasible. This step size is usually larger
than the previous ones so that feasibility in the problem can
be found more quickly.

-help to print a help message

6 Applying DSDP to Graph Problems

Within the directory DSDP3.2/exec/ is a program maxcut which reads a file containing a graph,
generates the SDP relaxation of a maximum cut problem, and solves it. For example,

> maxcut Max2

The files that contain a graph should follow the DIMACS graph format. The first line should
contain two integers. The first integer states the number of nodes in the graph, and the second
integer states the number of edges. Subsequent lines have two or three entries separated by a space.
The first two entries specify the two nodes that an edge connects. The optional third entry specifies
the weight of the node. If no weight is specified, a weight of 1 will be assigned.

The same options that apply to reading SDPA files also apply here.

A similar program reads a graph from a file, formulates a minimum bisection problem, and
solves it; for example,

> minbisection Max2

reads the graph in the file Mlax2 and solves this minimum bisection problem.

7 DSDP Application Programming Interface

DSDP3.2 can also be used with a set of subroutines. Examples of using the DSDP API can be
found by looking at the files DSDP3.2/src/dsdp.c and DSDP3.2/src/sdpa.c, which read data
from the MATLAB environment and a SDPA file, respectively, and solve the problem by using
DSDP. Other files DSDP3.2/src/maxcut.c and DSDP3.2/src/minbis.c read a graph and
formulate the maximum cut and minimum bisection problems. Each of these applications includes
the header file DSDP3.2/src/dsdp3.h and links to the library DSDP3.2/src/dsdplib.a. All
DSDP subroutines begin with the DSDP prefix and return an error code. A zero code indicates
success, while a nonzero indicates that an error has occurred.

7.1 Basics
To call DSDP as a subroutine, the DSDP data structure must first be created with the command
int DSDPCreate(int,int*, int*, DSDP *);

The first argument is the number of constraints in the problem, the second argument is the number
of blocks in the problem, and the third argument is an array of integers specifying the dimension
of each block. The length of this array must be at least as long as the number of blocks in the
problem and the dimension of each block corresponds the number of rows or columns of matrices
in the block. The final argument should receive the address of a DSDP structure. This routine will
allocate some resources for the solver and set the pointer.

After setting the data, which will be explained in the next section, DSDP must process the data
with the routine

int DSDPSetup(DSDP);
This routine allocates some additional resources for the solver and computes the eigenvalues and
eigenvectors of the constraint matrices. This routine should be called before solving the problem,
and should be called only once for each DSDP solver created. The command

int DSDPSolve(DSDP);
attempts to solve the problem. This routine can be called more than once. For instance, the user
may try solving the problem using different initial points. Each solver created should be destroyed
with the command

int DSDPDestroy(DSDP);

This routine frees the work arrays and data structures allocated by the solver.

7.2 Set Data

A positive semidefinite programming programming problem may be defined by using the following
“Set” routines. The first argument in each of these routines is a pointer to the DSDP solver. To
set the dual objective function, the routine

int DSDPSetDualObj(DSDP,int,double*);
accepts an array of double precision variables that contain the dual objective function b. The second

argument must equal the dimension of this objective vector and match the number of constraints
specified the DSDPCreate() command. DSDP will copy this data but not use the array.

The data matrices can be specified by any of the following commands. The choice of data
structures is up to the user, and the performance of the problem depends upon this choice of
data structures. In each of these routines, the first four arguments are a pointer to the DSDP
solver, the block number, and the constraint number, and the number of rows and columns in the
matrix. The blocks must be numbered consecutively, beginning with the number 0. Constraints are
numbered consecutively beginning with the number 1. The primal objective matrices are specified
using constraint 0. The data that is passed to the DSDP solver will be used in the solver, but not
modified. The user is responsible for freeing the arrays of data it passes to DSDP after solving the
problem.

To set data in a dense matrix, the routine
int DSDPSetDenseMat(DSDP,int, int, int, double *nnz);

hands DSDP a pointer to an array of length n¢ X ni, where n¢ is the number of rows in the matrix.
Since the matrix must be symmetric, the array may be in either row major or column major form.
The routine

int DSDPSetSparseMat(DSDP,int, int, int, double *, int *, int *);

specifies a matrix in sparse form. The fifth argment is an array containing the nonzeros of the
matrix. The sixth argument is an array of integers specifying the row number of each nonzero. The
last argument specifies the number of nonzeros in each column. Row and column number must be
numbered consecutively beginning with 0. The dimension of this integer array is one more than
the number of rows and columns in the matrix. The first element in this array in 0. Subsequent
elements in this array equal the previous element plus the number of nonzeros in that column.
These indices indicate where in the fifth and sixth arguments to find the nonzeros for a particular
column. This sparse column format, or sparse row format, given the symmetry of the matrix, is
the same sparse format used by MATLAB.

A diagonal matrix can be specified with the command
int DSDPSetDiagMat(DSDP,int, int, int, double *);

The last argument must be an array equal to the rows and columns of the block. This command
is especially appropriate when a block of linear programming variables is part of the problem. A
diagonal matrix can also be specified in sparse format by using the command

int DSDPSetSpDiagMat(DSDP,int, int, int,double #*, int *, int);

In this routine, the fifth argument is an array of nonzeros, the sixth column is an array of integers
specifying the row/column number, and the seventh argument specifies the the length of the arrays
in the fifth and sixth arguments which should equal the number of nonzeros in this constraint block.
If every element in matrix can the same value, the command

10

int DSDPSetConstantMat (DSDP,int, int, int,double);

will create a data structure that will make the computations in the algorithm more efficient. Sim-
ilarly, a program has a constraint where one block has a single nonzero element, which equals 1.0
and is located along the diagonal. The routine

int DSDPSetSingletonMat(DSDP,int, int,int,int);

creates an appropriate data structure. The fifth argument specifies the diagonal element where
the nonzero element resides. Matrices with a 2 x 2 block form can be specified with the following
command:

int DSDPSetTwoTwoMat(DSDP,int,int, int,
int i0, int i1, double d00, double d01, double diil);

The integers 70 and i1 specify the two row numbers of the nonzero block, while the next three digits
define the elements of the block. The elements in the upper triangular matrix are specified in row
major order. Matrices with a 3 X 3 block form can be specified by using

int DSDPSetThreeThreeMat(DSDP,int,int,int,
int i0,int il,int i2,
double d00,double dO1,double dO2,
double di1,double d12,double d22);

The integers 20, 71, and 2 specify the three row numbers of the nonzero block. The six double
precision arguments that follow define the upper triangular part of the matrix in row major form.
Constraint matrix blocks that have rank one can be specified by using the command

int DSDPSetRankiMat (DSDP,int, int,int,double, double *);

The sixth argument is an array of length equal to the number of rows and columns in the block.
The constraint is the outer product of this vector with itself times a scalar, which is specified in
the fifth argument.

7.3 Improving Performance

The performance of the DSDP may be improved with the proper selection of parameters and data
structures. DSDP accepts multiple data structures for the data matrices, including dense, sparse,
and diagonal representations. The choice of data types belongs to the user and may affect the
performance. In addition, DSDP may achieve greater efficiency by placing diagonal blocks before
nondiagonal blocks and smaller blocks before larger blocks.

DSDP allows the user to specify the initial starting point. The command

11

int DSDPSetYO(DSDP,int, double *);

specifies the initial dual vector y to be used. The second argument is an integer corresponding to
the number of constraints in the problem. The length of the array in the third argument must
exceed this dimension. DSDP will copy this data into its own structure. The initial dual matrix
can be partially controlled by using the command

int DSDPSetInitialInfeas(DSDP,double);

This command specifies a positive number r and sets S° = C' =3 A;y? +rI, where I is the identity
matrix. If r < 0, a default value will of » will be chosen. If S¥ is not positive definite, the routine
DSDPSolve() will return an error code of —100.

The algorithm also used trust regions to determine step sizes. The size of the trust regions affects
the convergence and robustness of the algorithm. By default, DSDP uses a dynamic strategy. The
user may specify a maximum trust region tolerance using the commands

int DSDPSetMaxTrust (DSDP,double);
and
int DSDPSetMaxInfeasTrust(DSDP,double);

The first command sets the maximum trust region radius when the dual iterates are feasible, while
the second command sets the maximum trust region radius when the iterates are infeasible. The
maximum radius for feasible iterates is usually about 3, while the maximum for infeasible iterates
is much higher by default. The default strategies can be specified by using a negative maximum
radius. Smaller trust regions generally make the solver more robust, allowing it to solve more
problems, but larger trust regions often reduce the number of iterations needed to converge. The
maximum steplength is determined by dividing the trust region radius by the statistic Pnrm. If
this statistic is consistently greater than the trust region radius, an increase in this parameter may
improve performance.

7.4 Set Options

A variety of different options may be set when using DSDP. The precision of the solution can be
set by using the routine

int DSDPSetGapTol(DSDP,double);

This command will terminate if the solver finds a sufficiently feasible solution such that the dif-
ference between the primal and dual objective values, normalized by the magnitude of the dual

12

objective value, is less than the prescribed number. A tolerance of 0.001 provides roughly three
digits of accuracy, while a tolerance of 1.0e — 5 provides roughly five digits of accuracy. The
command

int DSDPSetInfeasTol(DSDP,double);

specifies how small the dual infeasibility constant r must be to be an approximate solution, and
the routine

int DSDPSetMaxIts(DSDP,int);
specifies the maximum number of iterates. The routine
int DSDPSetDualBound(DSDP,double);

specifies an upper bound on the dual solution. The algorithm will terminate when it finds a point
whose dual infeasibility is less than the prescribed tolerance and whose dual objective value is
greater than this number. DSDP may print some information to the screen. This information can
be turned off by passing a zero value into the second argument of the routine

int DSDPPrint(DSDP,int);
A nonzero value asks to print the information. The command
int DSDPSetScaling(DSDP,double);

does some partial scaling of the problem. DSDP will scale the problem by implicitly dividing the
primal objective matrix by this number. An appropriate value is the magnitude of the largest
element in the primal objective matrix. A potential function may also be applied to the algorithm.
For feasible iterates, DSDP can set the parameters z equal to the current primal objective value
and p to a multiple of n+4+/n and can reduce the steplength until either the dual potential function

¥(y) =pln(z — bTy) —Indet S

has been reduced or the steplength becomes smaller than 0.1/Pnrm. This multiple of n++/n should
be greater that 1.0 and set by using the command

int DSDPSetPotentialParameter (DSDP, double);

A nonpositive parameter, which is the default, means that the potential function will not be enforced
at each step.

13

7.5 Viewing Solution
The dual solution vector y can be viewed by using the command
int DSDPGetY(DSDP,int, double *);

The user passes the size of the dual vector and an array of double to DSPP, which will copy the
dual solution into this array. The routine

int DSDPGetInfeasiblity(DSDP, double *);

returns the dual infeasibility r used in the final iteration. To view the primal solution, the user
must call either the command

int DSDPSetDenseXMat(DSDP,int, int, double *);
or
int DSDPSetDiagXMat(DSDP,int, int, double *);

before solving the problem. The user should use the first command for SDP blocks and the second
command for linear programming variable blocks. The first, second, and third arguments to these
routines are a pointer to the DSDP solver, the block number, and the number of rows and columns in
the block,respectively. In the fourth argument, the user passes an array of double precision variables
long enough to store either a full dense matrix of the size designated in the third argument, or a
vector whose dimension equal the number of rows or columns in the block. The command

int DSDPNoXMat (DSDP,int){

specifies a block for which the dual solution is not needed. Perfomance in the routine DSDPSetup ()
is generally better when the nondiagonal primal solution matrices X have been requested because
it uses this array as work space instead of dynamically allocating it for every matrix.

The success of DSDP can be interpreted with the command
int DSDPStopReason(DSDP,int *);

This command sets the second argument to an integer. If this integer equals 1, DSDP found a
primal and dual solution. If the integer is 2 DSDP terminated due to small steps. If the integer
equals 3, DSDP asserts that the problem is primal infeasible and the dual problem is unbounded,
and if the integer equals 4, DSDP asserts that the problem is dual infeasible and primal unbounded.
If the integer is -5 DSDP terminated after reaching the maximum number of iterations.

Information about the convergence of the solver can be obtained with the commands

14

int DSDPGetGapHistory(DSDP, int, double *);
and
int DSDPGetInfeasHistory(DSDP, int, double *);

These commands retrieve the history of the duality gap and the dual infeasibility for up to 100
iterations. The user passes an array of doubles and the length of this array.

8 Performance

More information about the convergence of the algorithm and performance of the software can be

found at [1] and [2].

9 Acknowledgements

We thank Cris Choi and Xiong Zhang for their help in developing this code, and Hans Mittelmann
for his efforts in testing and benchmarking it.

References

[1] S. J. Benson, Y. Ye, and X. Zhang, Solving large scale sparse semidefinite programs for
combinatorial optimization. STAM Journal of Optimization, 10:443-461, 2000.

[2] S. J. Benson and Y. Ye. DSDP3: Dual Scaling Algorithm for General Positive Semidefinite
Programs. Technical Report ANL/MCS-P851-1000, Argonne National Laboratory, November,
2000.

[3] K. C. Toh, M. J. Todd, and R. H. Tiitiinci. SDPT3 — A MATLAB software package for
semidefinite programming, version 1.3 Optimization Software and Methods, 11:545-581, 1999.

15

